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Descr ibed  is a method of calculating the ideal boundary of a supersonic  underexpanded jet  
and the f ree  surface  behind a solid of revolution. The resu l t s  of calculations a re  compared  
with those obtained by the exact  method of cha rac te r i s t i c s .  

In o r d e r  to calculate  the mixing of a supersonic  s t r eam with the ambient  gas,  it is neces sa ry  to know 
the location of the ideal s t r eam boundary. This boundary, as  well  as  the ent i re  flow field, can be calculated 
by the method of cha rac t e r i s t i c s ,  applicable to e i the r  the in ternal  or  the externa l  problem. Whenever  only 
the s t r eam boundary needs to be known, it is reasonable  to use approximate  methods of calculation. 

During the d ischarge  of a supersonic  underexpanded jet  into a moving medium, under  conditions ap-  
pl icable to the in ternal  p roblem,  there  appears  a longitudinal p r e s s u r e  gradient  which affects  the location 
of the ideal jet  boundary. In the externa l  p rob lemwi th  an appreciable  backs t ream,  analogously,  the longi-  
tudinal p r e s s u r e  gradient  de forms  the ideal f ree  surface  behind the bottom segment  of a solid of revolution. 

The ideal jet  boundary and f ree  surface ,  e i the r  under  constant p r e s s u r e  or  under  a longitudinal p r e s -  
sure  gradient ,  can be found on the basis  of the hypothesis  proposed in [1]. The jet  boundary under  condi ,  
t ions with a ze ro  p r e s s u r e  gradient  has a l ready  been calculated in [2]. 

According to [1], at eve ry  point on the je t  boundary there  take place two p roces ses :  r a re fac t ion  and 
compress ion .  The f o r m e r  is cha rac t e r i zed  by a quasi  one-dimensional  increase  in the je t  a r ea  by an 
amount  dF i, the l a t t e r  is cha rac t e r i zed  by the rotat ion of the s t r eam through an angle d~ and the format ion 
of a weak compress ion  wave. The following equation applies along the je t  boundary: 

_ 0p-  0~- d F , +  - -  d~ = d~. (1) 
OF~ a~ 

F r o m  the re la t ions  for  an isentropic  flow follows 

and the l inear ized  theory  yields  

0 s  kp-M, 2. q(M,) (2) 
OF~ M 2",- 1 q (Ma) ' 

2 Op = --T- p Ml 
0~ M~ --1 (3) 

(Here and henceforth,  whenever  two signs appear  before  an express ion ,  the upper  sign r e f e r s  to the i n t e r -  
nal p rob lem and the lower  sign r e f e r s  to the ex te rna l  problem.)  

At the je t  boundary (T = 1) and at the f r ee  sur face  (T = 0) we have 

dff" i = (1 +7 )  r~tdr~. (4) 

F u r t h e r m o r e ,  obviously 
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Fig .  1 Fig .  2 

Fig .  1. Bounda ry  of a s u p e r s o n i c  unde rexpanded  je t :  1) M a = 1.6, [5 = 0.1158, a = 0 [3]: 2) 
M a = 5.14,  a = 15 ~ [4]; 3) p r e s s u r e  d i s t r i bu t ion  a long the  je t  boundary  in the c a s e  2); 4) j e t  
boundary ;  c u r v e s  r e p r e s e n t  the solut ion by the me thod  of  c h a r a c t e r i s t i c s ;  do ts  r e p r e s e n t  the 
so lu t ion  to s y s t e m  (6). 

Fig.  2. F r e e  s u r f a c e  behind a sol id  of  revo lu t ion :  1) M a = 3, t5 = 0.3,  a = 0; 2) M a = 3, 
= 0; 3) p r e s s u r e  d i s t r ibu t ion  along the f r e e  s u r f a c e  in the c a s e  2); 4) f r e e  su r f ace ;  c u r v e s  
r e p r e s e n t  the solut ion by the me thod  of  c h a r a c t e r i s t i c s ;  do ts  r e p r e s e n t  the solut ion to s y s -  
t e m  (6). 

dT,._ tgo'. 
dx 

In se r t i ng  (2)-(4) into (1) and then dividing by d~ y i e l d s  

dO, 1 + 7 q (M~) 

M i - -  1 q (Na) 
dQ 
a} 

The so lu t ion  to s y s t e m  (6) f o r  the ini t ia l  condi t ions  

- VMUZ-, aP-=o,  
- -  r'V -d-ff-F kp-M~ " d--~ 

- -  = t g O .  

(5) 

(6) 

xo=O, rio=l, +(~o--~)=co(Mio)--~O(Yia) 

determines the location of the jet boundary or of the free surface, at a given pressure gradient dlS/d~. The 
relation between pressure and the Mach number M i can be expressed as 

2 b"l- a l 

P ' =  k - - 1  Mg (7) 
1--}- .... 2 ' 

In the spec i a l  c a s e  wi thout  a p r e s s u r e  g r ad i en t ,  s y s t e m  (6) b e c o m e s  

-4- do' -}- 1 + 7  q (Mi-------~-) r~dq=O, (8) 
VMV"~ - -  1 q(Ma) 

d~ _ tg O'. 
dx 

Since now M i = cons t ,  a c c o r d i n g  to (7), hence  in t eg ra t ion  of  s y s t e m  (8) y i e ld s  
r~ 

1 

S y s t e m  (6) was  n u m e r i c a l l y  in teg ra ted  on a c o m p u t e r  by the Runge - -Ku t t a  method .  The r e s u l t s  w e r e  then 
c o m p a r e d  with those  ob ta ined  by the me thod  of  e h a r a c t e r i s t i e s ,  a s  shown in F igs .  1 and 2. 

In Fig.  1 a r e  shown the ca l cu la t ions  fo r  the in te rna l  p r o b l e m .  The r e s u l t s  based  on the me thod  of 
e h a r a c t e r i s t i c s  w e r e  taken f r o m  [3] and [4]. In F ig .  2 a r e  shown the r e s u l t s  f o r  the e x t e r n a l  p r o b l e m .  
A, S. Sil ina a s s i s t e d  in the ea lcu la t ion  m a d e  by the me thod  of  c h a r a c t e r i s t i c s .  

605 



Both graphs  indicate that the descr ibed  approximate  method of calculating the je t  boundary and the 
f r ee  surface  behind a solid of revolut ion under  a longitudinal p r e s s u r e  gradient  yields  resu l t s  which a re  in 
c lose  ag reemen t  with the resu l t s  of exact  calculat ions by the method of cha rac te r i s t i c s .  

N O T A T I O N  

M is the Mach number;  
1~ = P/Pa is the p r e s s u r e  at the jet  boundary (or the f ree  surface);  

= F / F  a is the c r o s s  sect ion a rea  of a boundary s t r e a m  tube: 
:~ = x / r a  is the distance f rom the nozzle throat  (or f r o m  the solid of revolut ion);_ 

= r / r a  i s t h e  distance f rom the flow axis to the jet  boundary (or the f ree  surface);  
k is the adiabatic exponent: 

is half the nozzle angle (slope angle of the g ene ra t r i x  of the solid of revolution); 
q(M) = M{ (k + 1)/[2 + (k--1)M2]} (k+1)/2(k-1); 
co(M) = ~/(k + l)/(k--l) arctg ~(k--l) (IVI 2- i)/(k + i) --arctg Vm2--1. 

S u b s c r i p t s  

a r e f e r s  to nozzle  throat  (bottom segment  of the solid of revolution); 
i r e f e r s  to the je t  boundary (or the f r ee  surface) .  

L I T E R A T U R E  C I T E D  

1. T . C .  Adamson and J. A. NichoUs, JASS, 26, No. 1 (1959). 
2. A . F .  Charwat,  J. AIAA, 2 ,  No. 1 (1964). 
3. T . G .  Volkonskaya, Numer ica l  Methods in Gas Dynamics,  in: Trans .  Comp. Ctr. Moscow State 

Univ. [in Russian] (1963), Vol. 2. 
4. G . A .  Hosak and R. R. S t romsta ,  AIAA P a p e r  No. 69-4. 

606 


